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CONVECTIVE HEAT TRANSFER TO THE AMES M2 AND M2-F2

LI_TING ENTRY VEHICLES*

By H. Lee Seegmiller

Ames Research Center

SUMMARY

The convective heat transfer to the Ames M2 and M2-F2 lifting entry vehi-

cles has been measured at angles of attack from -7° to +77 ° during tests at

hypersonic Mach numbers. Transient temperature heating data were obtained at

a Mach number_ _, of iO, total enthalpy of iO. 4XlO 6 joules/kg (_500 Btu/ib),

and Reynolds numbers_ Re_ based on body length of O.O_XlO 6 and 0.023xi06.

Thermal paint isotherms_ oil flow patterns_ and flow visualization data were

obtained at M_ = 14_ Re = 0.035×i06_ and at M_ = i0 and Re = 0.41x106.

Shadowgraphs were obtained at M_ = 5.2 and 10.4 at Re = 0.9xlO 6 and l.ix106_

respectively_ and at M_ = _ and Re_z = 1.5×106 .

Heating of the configuration is generally concentrated at the nose_ pitch

control_ and fin leading edges at low angles of attack and at the lower sur-

face_ pitch control_ and extended rudders at high angles of attack. The data

for the lower body surface are compared with theoretical estimates at angles

of attack from 0° to 77 ° • Good agreement was obtained with the theory of Lees

for axisymmetric shapes at 0° angle of attack and with local swept-cylinder

theory at angles of attack above 21 ° . The dual lower pitch controls of the M2

configuration experienced heating rates considerably in excess of body stagna-

tion rates at an angle of attack of 14 ° . Heating of the single pitch control

of the M2-F2 configurations however_ was substantially reduced and was gener-

ally less than 50 percent of the body stagnation-point heating rate. Three-

dimensional separated flow occurred in the region of the lower pitch controls

and extended rudders in all tests at the lower angles of attack.

INTRODUCTION

This investigation is part of the current NASA research effort to develop

lifting-entry vehicles with horizontal landing capability. Some of the

results of this work at Ames Research Center are the configurations known as

the M2 series. The most recent configuration of this series_ the M2-F2_ has

been designed for stables hypersonic flight at angles of attack that permit

modulation of the lift-drag ratio from near 0 to about 1.3. The modulation of

hypersonic lift-drag ratio s which permits the selection of landing sites

unavailable to a ballistic vehicles involves the use of aerodynamic controls

to obtain stable flight at the required attitude. The extension of aerodynamic

control surfaces into the complex flow surrounding these vehicles must be done

,iudiciously_ however_ to minimize the heating penalties associated with all

_Titles Unclassified.



such controls. In view of the considerable effort which has been expendedin
the aerodynamic development of the _ series (see refs. 1-23)_ it is appropri-
ate to examine the convective heating of these configurations with the
aerodynamic controls required for stable flight at hypersonic speeds.

SYMBOLS

A

C

CF

CL

Cl

c2

H

L

D

Z

P

Po

Pt

Pt2

q

qo

Re, Z

R o

planform reference area

calorimeter specific heat

vertical-tail chord

lift coefficient

M2 pitch-control chord

M2-F2 pitch-control chord

rudder span

total enthalpy

lift-to-drag ratio

M2body length

free-streamMach number

surface pressure

model stagnation pressure

stream total pressure

total pressure in the body flow behind the bow wave

local heat-transfer rate

stagnation-point heat-transfer rate

average control heat-transfer rate

ratio of stagnation-point heat-transfer rate to the maximum stagnation

heating of the entry trajectory

body length Reynolds number based on free-stream properties

primary nose radius I_o]
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$2

Tt

Tw

t

W

X

Y

Z

(L

7

7 E

_p

8 r

P

Pc

T

qo

body-surface distance from the cone axis at the nose

M2 pitch-control span

M2-F2 pitch-control span

flow total temperature

wall temperature

time

weight

model axial coordinate

model lateral coordinate

model vertical coordinate

angle of attack with reference to cone axis

angle of yaw

specific-heat ratio

trajectory entry angle

pitch-control deflection angle

rudder deflection angle

normal distance from body surface

free-stream demsity

model calorimeter density

model skin thickness

body roll coordinate

EXPERIMENT

Test Facilities

Three test facilities were utilized for this investigation. The calorim-

eter heat-transfer data were obtained in the Ames 1-foot shock tunnel. Other

measurements in this facility include thermal paint isotherms, surface flow

visualization_ and self-illumination photography. In the shock tunnel a large
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combustion driver generates test flows at a velocity of 4,250 meters per sec-

ond. In the present configuration the tunnel has a running time of about

25 milliseconds. A more detailed description of the shock tunnel is given in

reference 24. Shadowgraphs, surface flow visualization; and thermal paint

isotherms were also obtained in the Ames 3.D-Foot Hypersonic Wind Tunnel.

This tunnel (described in ref. 25) is an intermittent, blowdown-type facility

with a large pebble-bed heater. A quick-insert model-support mechanism capa-

ble of plunging the model into the flow in approximately 1/4 second was used

for the tests in the 3.5-foot tunnel to eliminate the influence of the t_nel

starting and stopping processes on the model paint isotherms and surface flow
features. The third facility is the continuous flow i0- by 14-inch supersonic

wind tunnel described in reference 26. Shadowgraphs from this tunnel taken

during the work of reference 9 are used for comparative purposes in this

investigation.

The various test conditions in the three facilities are tabulated below:

Type of Test

Calorimeter,

self-luminous

photography

Paint, and

oil flow

Paint, and

oil flow

Shadowgraph

Shadowgraph

Shadowgraph

Shadowgraph

Facility M_ Re_,zXlO 6 Pt,atm Ht'J/kg Tt,°R NozzlexiO 6

Shock
!0.0 0.023,0.04

tunnel

Shock 14.0 0.035
tunnel

3.5 -foot i0.4 O. 41
tunnel

3.5-foot 5.2 0.$5
tunnel

3.5-foot 10.4 1.07
tunnel

3.5-foot !0._ _ 0.59
tunnel

10×14 -inch
5.o 1.9

tunnel

310.0

3!O.O

2_3.o

{". I_

69.0

69.0

5-9

10.4 4.5 ° half-sm_gle
conical

i0 ° half-angle
10.4 ---

conical

--- 2100 Axisymmetric
contoured

--- 2100 Axisymmetric
contoured

--- 2100 Axisymmetric
contoured

2100 Axisymmetric
contoured

660 Two-dimensional
contoured

Test Models and Instrtunentation

The M2 configuration; which has been well described in the literature

(e.g., ref. iI); is derived from a blunted 13 ° half-cone with dual rudder con-

trols. The aft portion of the body is boattailed and contains movable pitch

controls on the upper and lower surfaces. The boattailing which is required

for hypersonic pitch trimming also improves the subsonic landing performance

by lowering the base drag. The M2-F2 is an improved modification of the basic

M2 configuration in which the boattai! is extended and the dual lower pitch

controls are replaced with a single lower control. These changes resulted

from some of the investigations of references i through 19. Dimensions of the
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_ and _-F2 are _iven in f_-l'_h_g_._ghs;.o._ _om_ @_ t._e" several
types of models used in this investigation are seen _n" fig_z'e-2_."

Two different sized models (figs. 2(a) and (b)), 15.24 and _-9 cm long,

were used to obtain the thermocoup!e data in the shock tunnel. The shorter

model was supported with extensions of the dual rudders to reduce sting inter-

ference effects on the model base and upper surface at the higher angles of

attack. These models were made with an investment casting procedure developed

at Ames which uses a silicon-bronze alloy combining good casting properties_

strength, and kno_m thermal properties. The wall thickness of the finished

models was measured at each thermocouple location and was nominally 0.38 Imm

(0.015 inch). Thermal response times were computed for all models_ and typi-

cal values were found to be about 6 milliseconds. The pitch controls for the

models were formed from type 302 stainless steel sheet; those for the }_ were

0.2i mm thick and for the _-F2, 0.152 mm thick. Since the forebody of the I_

and _2-F2 are identical, measurements were made only on the H2 body and the

}_-F2 model body was an uninst_amented thick-wall casting of copper alloy.

Because of the slight variation in tunnel conditions from run to run

caused by the combustion driver of the 1-foot shock tunnel_ a hemisphere

P.Sil cm in diameter was tested simultaneously with the }_-F2 and 8.9 cm _

models, and the heating rates measured at the stagnation point of the hemi-

sphere were used to make the model heating rates dimensionless. The hemi-

sphere data were adjusted with the usual inverse square root relation to

compensate for the smaller radius at the nose of the 8.9 cm _42 model. The

hemispheres were also cast of the same silicon-bronze alloy used for the _,_

models. All the calorimeter models were instrumented with No. 36- and 40-gage

chromel-constantan thermocouple wire, 0.127 and 0.089 mm (0.005 and

0.0035 inch) in diameter, which was spot welded to the inside surface of the

model skin.

The models used for the 3.5-foot tunnel tests were 33.8 cm long and were

made by slush-casting an aluminum-oxide and silicon-dioxide slurry on the

inside surface of a thermoplastic mold. The green ceramic casting, approxi-

mately 0.65 cm thick, was oven fired at 1060 ° C for 4 hours. A supporting

sting socket was then potted in the cooled ceramic shell with an aluminuI_-

filled epoxy. The temperature-time histories of the model surface during the

tests indicate that the thermal diffusivity of the sintered ceramic material

was lower than the published values for dense aluminum oxide. This was bene-

ficial in preserving the details of localized heating on the surface of the

model. The finished ceramic models were sprayed with a commercially available

temperature-sensitive paint prior to testing.

Data Reduction

The thermocoup!e heating data were obtained in the shock tunnel by means

of the thin-skin; transient-temperature technique in which the model of kno_m

thermal capacity is subjected to a step change in thermal environment. The

rate of heat storage in the model skin may then be determined from the time

rate of change of skin temperature according to the relation:
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qstored = Pc CT dt

The heat stored in the model skin is a result of the complete therm_l process

described by the following heat balance relation:

qstored = qconvection net + qradiation net + qconduction net

An examination of "the various terms in this relation indicated that the conduc-

tion term could be minimized with suitable model-thermocouple design. Total

radiant exchange and convective processes at the inner surface of the model

skin are also negligible; therefore_ qstored is considered equal to

qconvective (aerodynamic) and no corrections have been made to the raw data.

Because of the complexity of the test configurations, an additional test

technique was used to supplement the limited spatial resolution of the thermo-

couple measurements. Temperature indicating paints were applied to the 3.5-

foot and shock-tunnel models to indicate areas of localized heating that might

not be detected with the thermocouple measurements. The ceramic models tested

in the 3.5-foot tunnel were sprayed with a four-color-change temperature-

sensitive paint. Isothermal contours were readily observed on these models as

lines separating two adjacent colors. For the conditions of the 3.5-foot

tunnel tests these isothermal contours qualitatively represent lines of

constant heating rate.

The color change paint was not used in the shock tunnel because of the

short test duration. Instead_ a flat black lacquer was applied to the model

surface in sufficient thickness to prevent heat diffusion through the paint to

the model surface during the 25 millisecond testing time. The paint surface

temperature distribution is thus related to the local heating rate and the

influence of the model construction (part thin skin, part heavy wall) is mini-

mized. Since the flow in the shock tunnel is terminated with an explosively

actuated nozzle valve and the flow starting process is very short compared

with the test time_ step change conditions are closely approximated. This

step change in flow allows the resulting model surface isotherms_ which are

visualized in the paint and are the integrated result of the entire heating

process_ to be related to the heat-transfer distribution. The visualization

of the isotherm is thought to result from the process described in refer-

ence 27 in which a thin film is formed on the surface of the paint by the

aerodynamic heating process. The thickness of this film is related to the

local heating rate since all surfaces of the model are exposed to the flow for

the same time. Isothermal contours can be observed after the test as regions

of constant color in the interference patterns in light reflected from the

surface. The heating ratios obtained by this technique were derived from

comparisons with the calorimeter data.
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Entry Trajectories

Before beginning the discussion of the test results it is instructive to

examine some representative near-earth-orbit entry trajectories for the _-F2

and to compare the flight environment with the test conditions of this investi-

gation. Three representative_ lift-modulated entry tra,jectories that req_tire

flight at an_les of attack from near 0° to almost 40° are presented in fig-

ure 3. Free-stream Reynolds numbers based on the 6. p meter len_h of the

M2-F2 vehicle are sho}a_ for several points in the entry. The i%ight Reynolds

numbers are found to be rather low_ generally increasing from about i)<i0s dur-

ing the peak heating of the pullout maneuver to about iXl06 at a velocity of

3 km/sec. The stagnation-point heating rate; which has been made dimension-

less with respect to the peak heating at pullout_ is also shown for several

positions in the L/D = 1.0 trajectory. Notice that for these entry tra,]ecto-

ries the Reynolds numbers stay below approximately one million until the

stagnation-point heating rate has dropped to almost one quarter of the peak

value. The flight Reynolds numbers of approximately l-to 2><10s during the

high-heating portion of the entry may be compared with Reynolds numbers of O. 2

and 0.;<<i0 z for the shock-tunnel tests and 4x10 s and iXl0 G for the 3.5-foot

tunnel tests. }[o evidence of boundary-layer transition was seen in the

present tests and the data are believed to be representative of laminar flow.

In the comparison of the experimental test conditions of this investiga-

tion with the environment expected in flight_ the questions of _,_ch n_nber

duplication; wall-temperature ratio; and chemical similitude also must be con-

sidered. With reference to the work of references P!!_and 29 it is believed

that the _,_ch number range of the present tests (i0 and 14) is sufficiently

high to demonstrate the essential features of the total pressure distrib_<tion

in the flow about this blunted_ slender body. The ratio of wall temperature

to flow stagnation temperature was found to be approximately 0.06 for the

shock-tunnel conditions and to vary from about 0._ to O. for the 3.>-foot and

i0- by l}_-inch tannels. In flight; ratios of approximately 0.2 to 0.4 are

expected for the various trajectories and vehicle surface temperatures that
may OC c_d_r.

The last item to be considered here is the degree to which the various

flow fields of the present tests simulate the chemical aspects of the flo_r to

be expected in flight. The low-temperature flows of the i0- by l;,-inch and

3.>-foot tunnels are_ of course_ in chemical equilibri_ and will not be con-

sidered in this discussion. A criterion proposed in reference 30 _ras found to

be helpful in this regard and was used in estims, ting the degree of chemical

similitude of the shock-tunnel and flight conditions. Briefly_ this criterion

involves a comparison of the detachment distance of the body bow shock in the

model flow to the reaction distance required for the maximum in the concentra-

tion of the NO species to be obtained in a corresponding nonequilibri_ planar

flow of air behind a normal shock. If these two distances are of the same

order_ then the three-body recombination reactions in the inviscid model flow

are relatively unimportant_ and two-body or binary scaling (PRo) concepts rm_y

be used to relate the flow to other two-body dominated flows at the same



velocity. To determine %he degree %6 wh{ch %Kis concept can be applied to the

present tests_ nonequilibrium real-gas calculations were _r_%de for the shock-

tunnel conditions by the method of reference 30. Tile reaction distance

required for the '._ximum HO concentration to be reached was fo_d in tile calcu-

lations to be two orders of magnitude greater than the model bow-shock detach-

ment distance. This indicates that a two-body dominated flow with relatively

_u_important recombination processes was obtained in the shock-t_unel tests.

Since, in the calculation, the nose flow _s fc_a_d to be out ,of equilibrium in

the dissociation processp some Srosen enerj_ of dissociation ;._y be present in

the expanding afterbody flow. Because of the nonequilibri<uu expansion of tke

floe7 in the shock-tunnel nozsle_ however, the dies<clarion level in the flow

between the bow shock and the bod_; nose is 6rearer than it would be in an

e_:uilibrium free stream, and the resulting flow about the shock-t<usnel model

is believed to approach the flight condition more closely than indicated by

the pR O product.

Tile flight and shock-tu_%nel conditions were co_:@ared on the basis of pR O

scaling_ and the computed condition is sho___ in fig_me 3 as the single-filled

s_bol. The product pR o for the shock-tunnel test is less than the desired

flight value (on the basis of free-stream density_ pR o x:_tching occurs at an

altitude above the desired trajectory). Conseq_ent!y_ the flight flow would

more closely approach equilibrium at the nose than would the shock-tunnel flow.

The previously mentioned NO criterion did, however, indicate that a two-body

dominated flow may also be expected for the flight conditien at the shock-

tunnel flow velocity. It is believed from the results of this analysis_ there-

fore, that the shock-tunnel results approxil:_te to a reasonable degree the

chemical aspects of the inviscid body flo_ at the test velocity.

Body Test Results

Body pressure distribution.- Several theoretical io_er surface pressure

distributions for an angle of attack of 0 ° are shown in figure J'. These theo-

retical distributions are compared with data from 3.D-foot tunnel tests of

reference ii since no data for the shock-tunnel conditions are available. The

theoretical curves were obtained from the modified Ne_,_onian theory used in

reference 31 and from computer calculations _sing the method of characteris-

tics and assuming shock-tunnel conditions for equilibri_n and frozen (y = 1.4)

flow. It should be mentioned that the _q nose shape is contoured in the

region of the juncture with the cone and therefore differs slightly from the

cone-hemisphere shape used for the two theoretical az,'is2m_netric pressure dis-

tributions. A point of interest was observed in the characteristics solutions

of reference 21_ which show an undershoot in the cone surface pressure several

nose radii aft of the blunt nose which slowly recovers to the I_e_onian value

at x/R o _ 20. In this sense the _"_ is a short body and the cone flow may be

expected to be substantially influenced by the blunt nose at low angles of

attack. Also, as sho_ in reference 2%_ the undershoot in cone pressure on

this short body is not expected to chan_e appreciably with increasing _ch

numbers above i0.

Bod,y heating distributions.- The longitudinal body heating distributions

are shown in figure 5. The heating data of this investigation are plotted in



the dimensionless ratio form of 16ca_ _t_a_f_or_t_'_ _ _In _r_rgy per
unit area per unit time), to the stagnation-point heating _a_'o_a sphere, qo,
having the sameradius as the major radius at the nose of the M2. The body
surface position is measured from the intersection of the axis of the cone
with the nose and is madedimensionless with the major nose radius which is
equal to 0.0833_. In the figures for the longitudinal centerline distribu-
tions (5(a)-5(e)), the upper surface data are shownon the right and the lower
surface data on the left.

A general feature of the data is that the higher heating rates are con-
centrated at the nose at the low angles of attack. Indeed, heating of the
body aft of the nose at _ = 0° is below i0 percent of the stagnation rate.
In figure D at _ = 0° three theoretical curves are shownfor the lower sur-
face heating distribution. The theory of reference 31 (Lees') is used with
the Newtonian pressures of figure 4_ and with the measuredpressure distribu-
tion of reference ii which was obtained in the 3.5-foot tunnel at a Machnum-
ber of 10.4 and a Reynolds number of 0.SXlOe. The third theoretical curve was
obtained by adjusting the experimental pressure distribution of reference ii
to include the effects of the source flow in the conical nozzle of the shock
tunnel. The theory of reference 32 was used for this calculation and nozzle
boundary-layer effects were neglected. It maybe seen that excellent agree-
ment with the present data is obtained with this calculation. Oneadditional
factor to be considered, however, is the effect of the viscous induced pres-
sures on the body at low angles of attack. The results of reference 33 indi-
cate that because of increased boundary-layer thickness the conical-body
pressures in the shock-tunnel flow maybe expected to be approximately 5 to
i0 percent higher relative to nose stagnation pressure than those measured in
the 3.5-foot tunnel. This increased pressure would, of course, result in a
slight increase in the local cone heating relative to the theoretical value.
It is believed_ nevertheless, that the present tests indicate relatively
little influence of the nonequilibrium inviscid flow on the body heating
distributions.

On the upper surface at _ = 0°, the influence of a large spherically
blunted canopy is seen in the low value of body heating just upstream of the
windshield. Apparently a region of separated flow is created by the canopy.
A region of separation was also observed in shadowgraphsof this body for
other test conditions which will be shownin a later figure. The three data
points obtained on the top of the body at the side of the canopy serve to
illustrate the heating that might be expected in the absence of a canopy. The
data for an angle of attack of 14° are shownin figure 5(b). This attitude is
representative of flight at the maximumlift-to-drag ratio for this vehicle.
The influence of the canopy on the top surface may still be seen although the
level of the top-surface heating is reduced by a factor of approximately 2
from the _ = 0° values. The lower conical surface heating ratio, however_
has increased from 0.06 to about 0.2. The theoretical calculation for fig-
ure 5(b) was madewith Newtonian pressures because of the approximate nature
of the tangent-cone assumption required in the application of the theory.

The data for 21° angle of attack are shownin figure 5(c). These and
succeeding data at higher pitch angles were obtained with the smaller 8.9 cm
model, which was supported with twin rudder extensions, so that heating could

9



be measured on tl_e base a_d _er _ur£ace of the model at the higher angles of

attack. At thi_ attitude (_ = 21 ° ) the influence of the aft canopy on the

upper surface heating has essentially vanished. The lower surface heating has

increased to about 0.3. The theory of reference 31 as used here substantially

underestimates the level of the data due to the developing crossflow on the

pitched cone. A simple local swept-cylinder prediction is found_ however_ to

give good agreement at this higher pitch attitude. The factor _ of refer-

ence 3_ was used to relate the three-dimensional spherical heating of the nose

to a cylindrical stagnation line value_ and a simple cosine variation was used

in this and the remaining figures to account for the sweep angle of the lower

meridian. The axial variation was obtained with the one-half power of the

ratio of the local body radius to the nose radius. The base-heating data in

figure 5(c) taken at the center of the flat base area are at about the level

of the heating on the top surface at the rear of the body (about 0.25 percent

of the reference value). Note also in figure D(c) that the heating on the aft

lower surface at the side of the boattail (S'/R o = 9._, _ = 135 °) is almost

twice that at the same longitudinal station on the lower meridian. This is

attributed to the two-dimensional boattailing of this three-dimensional body

which apparently results in an appreciable thinning of the boundary layer at

the side or corner of the boattail. This variation may be more readily seen

in the circumferential distributions that follow.

The data in figures 5(d) and 5(e) represent distributions for flight near

maximum lift coefficient and the special case where the lower cone element is

normal to the flow. At this attitude_ _ = 77° , the nose heating does not

reach the reference value. Model markings after the test show that the

boundary-layer flow away from the body meridian was not normal to the forward

cone element but was inclined slightly toward the nose_ indicating that a

stagnation-line type of flow would be obtained at an angle of attack slightly
less than 77 ° • This effect is caused by the increasing radii of the conical

cross sections. A similar effect was found in reference 35 where the maximum

stagnation line pressures for a 15 ° cone occurred at a meridian pitch angle of

about _0 °. Corresponding results may be seen in figure 6 in which the lower-

surface heating at the midpoint of the cone is shown as a function of the

lower-meridian pitch angle. The maximum heating occurs at a deflection angle

somewhat less than 90 ° . Also included in the figure are the calculations for

cone element pitch angles of 13° and 27° shown in figure 5 which use both mea-

sured and Newtonian pressures. With these two theoretical approaches, good

agreement is obtained with the data for the entire angle-of-attack range.

Circumferential heating distributions.- The circumferential heating dis-

tributions of the body including the aft canopy are shown in figures 4(a) to

7(e). The data are plotted with the position angle _ measured from the

upper meridian. The influence of the canopy and the development of the

windward-leeward flow may be seen in the figures. The increased heating at

the side of the lower boattail surface at station x/Z = 0.760 which was

mentioned previously can also be seen in figures i_(b), (c), and (d).

i0 _ .... "



Flow visualization.- Because of the complexity of the flow in the vicin-

ity of the controlsj shadowgraphs and other visual data will assist in the

analysis of the heating results. Shadowgraphs of the flow about the M2 are

presented in figures 8(a), (b), and (c). Figures 8(a) and 8(b) were obtained

from the work of reference 9 which was performed in the Ames I0- by 14-1nch

Supersonic Wind Tunnel at a Mach number of 5.0. Both lower control shocks are

seen in figure 8(b) because the model was rolled slightly and the shadowgraph

light source was not precisely in line with the two controls. Figure 8(c) was

taken during tests in the 3.5-foot tunnel at a Mach number of i0.0 with the

same model configuration and attitude shown in figure 8(a). The test condi-

tions for these shadowgraphs are listed on the various figures. Although

these photographs represent nearly adiabatic wall conditions and therefore

tend to overemphasize the degree of separation that would be present with a

cold wall at the same conditions, the general feature to be observed is that

the body boundary layer is separated by the deflected pitch controls and that

the extent of the three-dimensional separation is influenced by the body pitch

attitude.

The condition of the model after the shock-tunnel tests is shown in fig-

ure 9. These tests were performed at a Mach number of i0 with the same pitch

control deflection and attitude shown in figure 8(b). The discolored areas on

the face of the pitch controls are believed to represent the reattachment zone

of the separated body boundary layer. Other markings are also visible on the

body surface in figure 9(b) and are apparently associated with the flow in the

separated area. The three-dimensional character of the entire separation

region is indicated by the curvature visible in the reattachment zone markings.

Inviscid total pressure distribution.- A factor which should be consid-
ered in a discussion of flow over the controls of blunt-nosed slender bodies

is illustrated in figure i0. In this figure the normalized total pressures

are shown for the inviscid flow between the shock envelope and the body sur-

face of a blunted 15 ° cone. The solutions were obtained with the method of

characteristics and are for the ideal gas flow of air at several Mach numbers.

These distributions, which are dependent upon longitudinal station, were com-

puted for a body station (X/Ro) of 5.00. For relatively short bodies such as

the M2, however, the distributions shown are representative. Note the sub-

stantial variation in total pressure in this blunt-nose dominated flow field.

Notice also that at higher _ch numbers the region of low total pressure near

the body occupies an increasingly large portion of the inviscid shock layer.

It is to be expected therefore that the flap-type controls that extend into

this nonuniform flow may experience substantial variations in surface

pressures and heating.

M2 pitch-control heating.- The pitch-control heating distributions for

the M2 are shown in figures ll and 12. These data were obtained in the shock

tunnel for _ = 0° and 14 ° with the approximate control deflections required

for trim. In general, the results show increased heating from the hinge line

aft in the longitudinal distributions and increased heating at the outer edge

of the controls in the spanwise distributions. This result is indicative of

the three-dimensional separation and reattachment of the body boundary layer



in the presence of the _rev_ously _i_cuss_d nonuniform flow which surrounds
the body. The maximumlevel of heating for these M2 controls was 40 percent
of the reference value at _ = 0° and 340 percent at _ = 14°. (Local control
heating considerably in excess of the body stagnation value was also observed
in a previous work (ref. 36). With the assumption that the prominent dark
band seen on the face of the pitch controls in figure 9 represents the zone of
reattachment of the body flow on the controls, a limited comparison of the
extent of separation maybe madewith the shadowgraphof figure $(b) from the
tests at M = 5. Although the three dimensionality of the flow in the sepa-
rated region makesa quantitative comparison difficult_ measurementsindicate
that the extent of separation in the M = i0 shock-tunnel flow maybe similar
to that in the i0- by l_I-inch tunnel tests at M = 5 at the model pitch
attitude of 14°.

M2-F2Single Pitch Control

Pitch trim and flow visualization.- The pitch control deflection angles

required for longitudinal trim of the M2-F2 at hypersonic speeds and angles of

attack up to 37 ° are presented in figure 13 to assist in the interpretation of

the heating data that follov.

These pitch-trim results were taken from the recent work of Axelson

(ref. 37) which was performed in the 3.5-foot tunnel. Shadowgraphs of the

flow over the M2-F2 pitch control during tests in the 3.5-foot tunnel are seen

in figure 14. These shadowgraphs compare flow over the control at Mach n_m_-

bers 5 and i0 in the 3.5-foot tunnel for attitudes near maximum lift-drag

ratio and maximum lift. Natural illumination pictures of the flow over the

pitch control in the shock tunnel_ and a thermal paint photograph are

presented in figure i_.

A comparison of figures 14(a) and (b) which were taken at Mach numbers of

5 and i0 at the attitude for maximum lift-drag ratio shows an increase in the

extent of control separation at Mach i0. The corresponding figures 14(c) and

(d), however, show no effect of the increased Mach number on the limited

extent of control separation which occurs at the higher pitch attitude of 30 ° .

The flow visualization information for the M2 and M2-F2 is summarized in

table I with the comparable model configurations indicated with brackets. Two

points may be noted from an inspection of these tabulated results: The extent

of control separation on the M2 at _ = 0°, and on the M2-F2 at _ = 15°_ is

apparently increased with increasing Mach number whereas the combined effects

of low wall-temperature ratio and low Reynolds number tend to decrease the

extent of separation on the M2-F2 at _ = 15 ° in the shock-tunnel flow. In

contrast, the much less extensive separation on the M2 at _ = 14 ° and on the

M2-F2 at _ = 30 ° is apparently insensitive to the various test conditions.

From a comparison of the M2 and the M2-F2 it is believed that the aft mounted

control of the M2-F2 is more extensively shielded by the boattail and there-

fore retains sensitivity to the previously mentioned total-pressure gradients

and to body boundary-layer development to a higher pitch attitude than do the

more forward positioned controls of the M2. The increased aspect ratio of the

wider M2-F2 control would also be expected to influence the extent of

separation and this may be seen in the table for comparisons of similar pitch

12
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TABLE I.- FLOW VISUALI_'I'ON "_U_4_H_" :O_-_B0_'f_IlA_E_ SEPARATION

IN THE REGION OF THE LOWER PITCH CONTROLS

Percent
_, 5p_ Mj_ Re_, Z Tw/Tt separation Source Figuredeg deg

0 45 5.0 1.9XlO 8
E 0 145 10.4 .5×106

E I_ 45 5 1.9XlO 6
i_ 145 i0 .04×106

"_i 15 35
15 35

E 30 15
3o 15

I
I

[£
15 40

5.2
i0.4

I0

14

•85xi06

i. 0})<106

•85x106

i.07XlO 6

•04XlO 6

.035xi06

alO- by 14-inch tunnel

b3.5-foot tunnel

Cl-foot shock tunnel

M2

O•

.63

•'{

•06

4O

7O

2O

2O

Shadowgraph a

Shadowgraph b

Shadowgraph a

First edge
of burn mark c 9

M2 -F2

.5

.5

.5

.5

.O6

.o6

4O

70

Nil

Nil

4O

25 edge

50 center

Shadowgraph b

Shadowgraph b

Shadowgraph b

Shadowgraph b

Natural

illumination c

Paint
c

markings

8(a)

 I(b)

14(a)
l (b)

l (c)
l (d)

1)(b)

l)(d)

attitudes and control deflections. One important aspect of this configuration

with respect to control separation is the stabilizing influence of the

favorable pressure gradient (caused by the boattail) on the body boundary

layer.

Exploratory oil flow tests were performed in both the 3.b-foot tunnel and

the shock tunnel and photographs of the results are presented in figure 16.

In comparing the oil flow results which at first appear quite different, it is

necessary to consider that the visualization materials used are sensitive to

the product of the local heating rate and the test time. The shock-tunnel

test was of such short duration that the graphite-grease did not melt and flow

on all parts of the model, whereas in the 3.5-foot tunnel test the colored

paraffin was melted from both the nose and the control• A limited qualita-

tive indication of the surface shear_ flow direction, and relative heating may

be obtained; however; from the figures. Some details of the control edge flow

may be seen on the shock-tunnel model and the separation line upstream of the

control is visible on the 3.5-foot tunnel model. Notice also in both tests

the substantial component of surface cross flow near the nose at this low

angle of attack.
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M2-F2 pi_ch control h_ating.- The pitch-control heating distributions

obtained for the M2-F2 in the shock tunnel are presented in figures i_ to 23.

Both longitudinal and spanwise distributions are shown for angles of attack of

0°, 15 °, and 20 ° . One test was made at combined pitch and yaw angles of 15 °

and the results are shown in figure 21. A general feature of the data, as in

the M2 results, is the increase in heating at the rear and outer edges of the

control. In three instances, however, at _ = ID ° (figs. i!_, 20, and 21) max-

imum heating occurred forward of the control trailing edge. This is believed

to indicate that the local boundary-layer reattac_ent process has been com-

pleted in these areas. Data were also obtained on the flat side of the con-

trol near the edge for two conditions and may be seen in the spanwise

distributions of figures l!Z_and 21. In figure i!_ which is for the unyawed

body the side heating is seen to be relatively low and is similar in level to

the heating of the face of the control near the hinge line. For the yawed

attitude, however, when the instrumented side is upwind (fig. 21(b)), heating

of this surface substantially exceeds that of the forward face of the control

and reaches a level of about 0.7. It is indicated, therefore, that considera-

tion must be given to the protection or elimination of actuating mechanisms

near the sides of flap-t_pe controls.

To summarize the previous figures, longitudinal heating distributions are

presented in figures 22 and 23 showing the edge and center heating for the

unyawed tests. Reference may be made to figure 13 for the control deflections

required for trim. Note the substantial increase in heating at _ = 15 ° when

the control deflection is increased from 30 ° to 40°. The required deflection

for trim at this attitude is 33 ° for the moment center given in figure i. It

is apparent that changes in vehicle configuration that require additional

control deflection for trim may substantially increase the heating load to the

control.

A comparison of the M2 and M2-F2 control heating is given in figure 24.

The dashed line represents heating data for the boattail area of the body

(Sp = 0°). It is evident that the heating rate of the M2-F2 control is sub-

stantially less than that of the M2. Total heat load comparisons must, of

course, include the factor of 2 increase in exposed surface area of the larger

control. A comparison of the relative effectiveness of the two controls based

on the geometrical considerations of the larger M2-F2 control and the

increased leverage obtained from the more aft position shows that the required

pressure on the M2-F2 control is approximately 1/3 of the value required for

the dual M2 controls. The relative heating of the two control systems which

might be expected at the location of boundary-layer reattachment _vas estimated

from the data of reference 38. These estimates, which ignore the three-

dimensional character of the control flow, indicate that a reduction in heat-

ing by approximately a factor of 4 might be expected for the M2-F2 control.

It may be seen in the figure, however, that substantially larger differences

were measured. This is believed to be a result of the highly three-

dimensional flow over the narrower M2 controls. In summary, it is seen that

with careful design it appears possible to avoid excessive control heating

_vhile still maintaining sufficient control effectiveness for trimmed flight.
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Fin,Ruder

M2 fin and rudder heating.- Two photographs and a sketch of the results

of an oil flow test in the shock tunnel at _ = 0 ° are shown in figure 25.

Localized heating at the top of the deflected rudders may be seen in both pho-

tographs. In later figures_ this area of localized heating will be seen to

move to the lower edge of the rudder as the angle of attack is increased. The

surface flow on the deflected rudders has been visualized with streaks left by

the melted or vaporized graphite grease. It may be seen that the surface flow

is highly three-dimensional on the upper surface of the deflected outboard

rudders. Apparently the combined effects of the impingement of the fin

leading-edge shock on the upper rudder edge and the increased body boundary-

layer thickness at the lower edge of the rudder are sufficient to cause this

downward flow at _ = 0°. In figure 16(c) evidence of an upward flow para!lel

to the rudder hinge line maybe seen after a test at an angle of attack of 15 °.

The existence of this parallel flow which changes direction with pitch angle

should be considered in the design of hinge mechanisms and aerodynamic seals.

The results of measurements made in the shock tunnel of the fin and rud-

der heating are seen in figure 26. Two angles of attack were tested_ 0° and

14 °. The fin leading-edge heating is relatively low at _ = 0°, imcreasing

from 0.15 near the body to about 0.25 near the upper edge. An indication of

the nonuniformity of shock-layer flow about this blunt slender shape my be

seen in these heat-transfer measurements in which the swept leading edge of

the fin intercepts a cross section of the body flow field. The fin-rudder

heating at _ = 14 ° is seen in figure 26 to be approximately one order of mag-

nitude lower than that at _ = 0°, and at sufficiently high angles of attack a

swept trailing-edge type of flow may be expected to develop at the fin leading

edge. With reference to the previous discussion of hinge-line flow_ note that

the heating of the lower portion of the outer rudder (shown with an open

triangular symbol) is increased by a factor of 2 as the pitch angle is
increased to _ = 14 °.

Canopy heating.- The heating data for two proposed canopy configurations

are shown in figure 27 for two angles of attack and one angle of yaw. The

heating of both canopies is quite low for these attitudes with heating ratios

between about 0.01 and 0.i being measured. The more slender conical canopy
has about the same level of heating at the forward location as the blunt

canopy has in the aft position.

M2-F2 Temperature Visualization Results

Shock-tumnel results.- The thermal contours which were obtained with

paint in the shock tunmel are shown in figure 28 (figures 2(c), 2(d) and

15(d) are photographs of the model after the test) for tests at _ = 14 and
R%_Z = 0.035×i0 s. The numerical values of heating ratio are to be regarded

as approximate only and were obtained from comparisons with local values

obtained from the calorimeter measurements. These thermal-paint techniques

are intended to supplement the limited spatial resolution of the thermocouple

measurements which might miss entirely a small area of localized heating. In

this sense the thermal paint results generally agree with the thermocouple
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measurements; wmth one _xcept_Gn._Tn_ _ t_erm_i paint patterns on the pitch

control at _ = 15 ° and 5p = 30o (fig. 2_(b)) did not indicate the increase in

heating at the edge of the control which was found with the thermocouple

mea sur ement s.

$._-foot-tunnel results.- The data presented in figures 29 through 31

were obtained from tests in the 3.5-foot tunnel at a Mach number of i0 and

Reynolds number of 0.5×106 • Figures 29 and 30 illustrate the changing model

appearance during the course of the run as the isotherms advance over the sur-
face of the model. The photograph in figure 29(c) taken after completion of

the run reveals several details of the influence of the deflected control on

the body surface. Evidence of intense local heating of the lower corner of

the deflected rudder is also seen in the _hotograph. Figure 29(d) is a top
view of the model after a test at _ = 15 showing the heating of the swept

conical windshield. Figure 30 is a sequence of photographs showing the heat-

ing of the configuration at 30 ° angle of attack. In figure 30(b) a separation

zone is indicated by the light colored area on the body just forward of the

control. A separation shock is also faintly visible at approximately the same

location in the shadowgraphs of figures 14(c) and (d). The separation and

reattachment angles are apparently quite small and there is little evidence of

the separated flow on the control. Indeed_ the pitch-control heating as

indicated by the appearance of the model in figure 30(c) is relatively mild at

this attitude.

The photograph in figure 31 was taken after a test in the 3.5-foot tunnel

at _ = -7° . At this attitude, which corresponds approximately to the atti-

tude for zero lift, the leading edges of the fins and the upper corner of the

deflected rudders are exposed to a heating level similar to that of the body

stagnation point. An interesting heating pattern is developed on the upper

body surface from the interference of the flow developed behind the canopy

shock at the intersection of the canopy and the body upper surface. In sum-

mary_ the thermal paint technique was found to be quite useful and increased

considerably the confidence level of the data with respect to spatial

resolution.

CONCLUDING REMARKS

An experimental investigation has been conducted to determine the aero-

dynamic heat transfer to the Ames M2 and M2-F2 lifting entry bodies. The test

conditions include Mach numbers of 5_ i0_ and 14 and several Reynolds numbers

which span the range of those to be expected in flight. Calorimeter_ oil flow_

and thermal paint data were obtained in the 1-foot shock tunnel at a total

enthalpy of 10.4 joules/kg (4500 Btu/ib). Oil flow, shadowgraphs, and thermal

paint patterns were also obtained in the 3.5-foot hypersonic wind tunnel.

Pressure distribution data from concurrent tests in the 3.5-foot and shadow-

graphs from the !0- by 14-inch tunnel were also employed to assist in the

analysis of the heating data. Analysis of the results has shown the

following:
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1. The heating of the Configur_t_l _t_ _q_ angl_'of_a_ac_k _is, in

general, most intense on small areas at the nose, fin" ]'eadln_e_6s, and lower

pitch control. At higher angles of attack the heat load is primarily imposed

upon the body lower surface and extended controls.

2. The heating of the lower surface of the body at _ = 0 ° in the shock

tunnel flow was well predicted by the theory of Lees' from the measured pres-

sure distribution data from the 3.5-foot tunnel. Lower surface meridian

heating at large pitch angles was predicted by a local swept-cylinder theory.

3. Deflection of the rudders and lower-surface pitch controls into the

nonuniform three-dimensional flow surrounding this blunted body induced separa-

tion of the surface flow which was observed in all test facilities. The

extent of separation was influenced by the control aspect ratio and position

on the body as well as the control deflection and body pitch angle.

4. The extent of control induced separation was found in this investiga-

tion to increase with increasing Mach number and was reduced by the combined

effects of strong wall cooling and decreased Reynolds number.

5. The heating of the larger pitch control of the M2-F2 was substan-

tially less than that of the two smaller controls of the M2. Maximum local

heating of the M2-F2 control at the body attitude for maximum lift-to-drag

ratio was less than 1/3 of the nose stagnation value. It is apparent, there-

fore, that the pitch controls of this class of lifting body can be designed to

provide the necessary trimming moments without incurring a severe heating

penalty.

6. Heating of a highly swept, forward canopy and a larger aft-mounted

canopy did not exceed i0 percent of the nose stagnation value at 0° angle of
attack.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif. 94035, June 7, 1968

124-07-01-03-00-21
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(a) Low _o }42 model.
A-4086[

(b) IIigh I_ model.

Figure 2.- Test models.
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Figure 9.- Photographs of the M2 model after test in the 1-foot shock tunnel
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